Hidden Markov Models for Gesture Recognition

نویسندگان

  • Donald O. Tanguay
  • Aaron F. Bobick
چکیده

Understanding human motions can be posed as a pattern recognition problem. Humans express time-varying motion patterns (gestures), such as a wave, in order to convey a message to a recipient. If a computer can detect and distinguish these human motion patterns, the desired message can be reconstructed, and the computer can respond appropriately. This thesis describes an approach to recognize domain-dependent gestures using the statistical pattern recognition tool, the Hidden Markov Model (HMM). Through several experiments with two-dimensional mouse gestures, this thesis analyzes the behavior of HMM training and reports some important insights towards better HMM performance. Thesis Supervisor: Aaron F. Bobick Title: Assistant Professor of Computational Vision

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

Modeling of Gestures with Differing Execution Speeds: Are Hidden Non-markovian Models Applicable for Gesture Recognition

Gesture recognition is an important subtask of systems implementing human-machine-interaction. Hidden Markov Models achieve good results for gesture recognition in real-time supporting a low error rate. However, the distinction of gestures with different execution speeds is difficult. Hidden non-Markovian Models provide an approach to model time dependent state transitions to eliminate these pr...

متن کامل

3D Hand Motion Evaluation Using HMM

Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...

متن کامل

A new approach for touch gesture recognition: Conversive Hidden non-Markovian Models

With the current boom of touch devices the recognition of touch gestures is becoming an important field of research. Performing such gestures can be seen as a stochastic process, as there can be many little differences between different executions. Therefore stochastic models like Hidden Markov Models have already been applied to gesture recognition. Although the modelling possibilities of Hidd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998